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Introduction:

Truss analysis by hand is a tedious and time-consuming process in which algebraic errors can
easily arise. Using a computer program, such as MATLAB, for truss analysis greatly improves
the accuracy and speed of calculations. The program will determine which member of the truss
will buckle first and, in conjunction with the experimental critical force from the buckling lab,
allows us to determine the maximum load the truss can support. Furthermore, optimization of
cost and maximum load, and comparison between candidate trusses — tasks which would be
otherwise hard by hand — are easily completed with a computer program. Using our
truss-analysis program, we will evaluate several candidate truss designs. Our goal is to choose
the design which both minimizes cost and supports the heaviest live load.

Methods & Analysis:

Code:
Our program depends on a provided input file requiring the user to revise 5 input matrices
based on consistent numbering of joints and members by the user:

1. C: Binary connection matrix (j x m) which describes the connection of the joints (rows)
and members (columns) of the truss. A “1” in position (j, m) means that joint j is
connected to member m; a “0” means there is no connection.

2. X: Location vector of length j describing the x-locations (in.) of each joint.
3. Y: Location vector of length j describing the y-locations (in.) of each joint.

4. Sx: Binary support force matrix (j x s) describing the location of the horizontal support
force(s), where s is the number of support forces. A “1” in position (j, 1) means there is a
horizontal support force at joint j.

5. Sy: Binary support force matrix (j x s) describing the locations of the vertical support
forces. A “1” in position (j, s) means there is a vertical support force at joint j. Note that
between Sy and Sx there should be a “1” in each column.

6. L: Load vector of length 2j that represents the joints of the truss. The row that
corresponds to the joint where the load is placed has a value of +mg. The rest of the
vector consists of zeros as the load is placed at one joint.

Next, matrix A was constructed by concatenating matrices representing the static equilibrium
equations for the X- and Y-directions (Ax and Ay) as well as inputted Sx and Sy matrices.

To obtain Ax and Ay (both j x m), the columns of connection matrix C were iterated through to
identify which rows (joints) each member connects to. Then, for each identified pair of joints,
their respective coordinate pairs are obtained and the Cartesian distance between them is
easily calculated. The distances are then used to scale the horizontal and vertical components
of the force at each joint.



For example, for a member spanning from (x4, y;) — (Xo, X,), the “1” in position (1, 1) in the Ax
matrix is scaled by (x; - x;) / r;, and the vertical component at the same position in the Ay matrix
is scaled by (y, - y4) / ry,. This procedure is repeated for each member. Since the absolute
values of the normalized differences are the same for both connected joints of a member — one
being (x; - x;) and the other (x, - x,) — the code simply negates the sign for the secondary row
where the value is updated. The same logic applies to the y-differences.

To form the final A matrix, the Ax and Ay are vertically combined then horizontally concatenated
with the Sx and Sy matrices. This A matrix (2j x m + s) is related to the load vector (L) by:

L =AT

where T is a force vector (length m + s) consisting of all of the unknown forces. Because A is a
square matrix (as s = 3 and, for a normal truss, M = 2J - 3), it is invertible, and T can be solved
as follows:

T = AL

Once each of the forces have been obtained via the T matrix, the maximum load and the
member which will buckle first (critical member) can be found. Because we assume the truss
members can withstand infinite tension, only the compression forces are considered. Because a
truss is a linear system, for each compressive member, m, we can obtain R, which relates the
external load and the force in the member by:

T =WXR =R =T /W
m m m m

Next, the buckling force (a function of length) in oz. for each member is obtained by:

P (L) = 4863.346L %%
crit

The uncertainty in the buckling force is + 1.54 0z (95% confidence, 2 standard deviations). From
P.i and R,, the critical load for each member can be found by dividing P/ R,. The smallest
critical load is the maximum load for the truss and the member which determines it is the critical
member, the member which will buckle first. The uncertainty in the max load can be calculated
as follows, where AP_; is 1.54 oz:

AP /P

crit

= AV'/max/ Wmax = (APcrit X Wma )/P = AW

crit X crit max

Finally, the total cost of the truss and the weight-to-cost ratio can be calculated. The total cost is
calculated by:

Cost = $10(j) + $1(D

where j is the number of joints and | is the total length of members. Then, the weight-to-cost
ratio is simply the maximum load divided by the total cost.



Practice Problem:
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Figure 1. Manual solution of a practice truss using the method of joints. The structure is in the
top left. Tensile forces are positive while compressive forces are negative (sign omitted).

Figure 1 displays the manual approach to a practice truss problem with the goal of confirming
the accuracy of our program. First, for the entire structure, the sum of forces in the x- and
y-directions and moment about A were set to zero. This determined the reaction forces at joints
A and H. From there the individual forces in each member were solved by isolating the joints in
the following orderr A-B —-C —>H—->F -G — D.
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Figure 2. Computational solution of the same truss problem as in Figure 1. Here, m1
corresponds to AB; m2 to AD; m3 to BC; m4 to BD; m5 to CD; m6 to CE; m7 to DE; m8 to DF;
m9 to EG; m10 to FG; m11 to FE; m12 to GH; m13 to FH; Sx1 to A,; Sy1 to A,; and Sy2 to H,.

Figure 2 displays the computational solution of the exact same truss problem that Figure 1
solved manually. Although the units are in oz., when converted to N, the forces are identical. For
example, m1 =-59.93 oz = 16.7 N, compression, which is exactly what the manual solution has.
Table 1 summarizes these results and highlights the similarity between the computational and

by-hand solutions.

Table 1. Forces for the practice truss problem solved manually and computationally. Forces are

equivalent, showing the accuracy of the code.

Manual Computational
Member Eorce (N Eor Z. Member For Y4
AB -16.7 -59.9 m1 -59.9




AD 0 0 m2 0
BC -23.6 -84.8 m3 -84.8
BD 16.7 59.9 m4 59.9
CD 16.7 59.9 m5 59.9
CE -16.7 -59.9 m6 -59.9
DE 11.8 424 m7 42.4
DF 8.33 30.0 m8 30.0
EG -11.8 -42.4 m9 -42.4
FG 8.33 30.0 m10 30.0
FE 0 0 m11 0
GH -8.33 -30.0 m12 -30.0
FH 0 0 m13 0
A, 0 0 Sx1 0
A, 16.7 59.9 Sy1 59.9
H, 8.33 30.0 Sy2 30.0
Results:

We choose to analyze two candidate trusses, both of which are based on non-right triangles.
Both trusses assume a pin support at the left-most joint (forces S1x and S1y) and a roller
support at the right-most joint (S2y).

Candidate Truss 1:

The design for the truss is displayed in Figure 3 with the members and joints labeled.
Furthermore, the critical member is highlighted. Figure 4 displays the code output. Table 2
summarizes the forces in each of the members as well as provides information on member
lengths, buckling forces, and force at max load. Only the buckling forces are noted for members
under compression as the materials used can sustain (for our purposes) nearly infinite tensile
force. Additionally, the critical member is highlighted according to the computational result.
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Figure 3. Diagram of candidate truss 1 with joints and members numbered and external forces

labeled. The critical member (the member which will buckle first) is highlighted.

M Editor - TrussDesign1_GalenJustinFelix A1.m ® x | @ Web Browser - EK301_Preliminary_Design_InputFile

Command Window ®
>> TrussDesignl_GalenJustinFelix Al
EK301, Section Al, Group: Galen C., Justin Y., Felix M., 11/12/2024
Load: 45.27 oz
Member Forces in oz
ml: -26.89 oz (C)
m2: 12.02 oz (T)
m3: 23.53 oz (T)
md: -22.74 oz (C)
m5: -23.53 oz (C)
mé: 33.07 oz (T)
m7: -20.17 oz (C)
m8: -48.47 oz (C)
m9: 79.49 oz (T)
ml0: -18.57 oz (C)
mll: 33.15 oz (T)
ml2: -44.47 oz (C)
ml3: -21.28 oz (C)
mld: -22.88 oz (C)
ml5: 21.36 oz (T)
mle: 12.13 oz (T)
ml7: -24.44 oz (C)
Reaction Forces in oz
Sxl: -0.00 oz
Syl: 24.05 oz
Sy2z: 21.22 oz
Cost of Truss: 5247.53
Critical Member: m8
Max Load: 45.2672 oz
fx, Theoretical Max Weight to Cost Ratio: 0.18287394

Workspace

Name Value

A 20x20 double
1 Ax 10x17 double
[ Ax_Sx 10x20 double
Ay 10x17 double
[ 1] Ay Sy 10x20 double
£ C 10x17 double
[ cn 100

c2) 147.5320

1l colc 17

[ Critical_Me... 8

[ Failed_Joint 79.4927

i 17

{1 index 18

AL 20x1 double
1 Member F... -391.0241
[ num_cols_... 17

4 num_cols_... 17

[ Num_com... 10

[ num_rows... 10

19 num_rows... 10

[ Num_XFor... 1

[ Num_YFor... 2

[ Perit -48.4706

[1ir distance 8.0623

[ r_distances... 147.5320

[ r_distances... 77x7 double
[ Rm -0.5399

11 row1 9

[ row2 10

[ rows_with_... [9;10]

11 S_col 3

Figure 4. Computational output for candidate truss 1 with load, member forces (0z.), reaction
forces (0z.), cost of truss, max load, and weight-to-cost ratio highlighted. A negative force

indicates compression and a positive force indicates tension.




Table 2. Members, lengths, state of force (tension, compression, or zero-force member),

buckling forces with uncertainties, and force under max load of members in candidate truss 1. A
negative force indicates compression while a positive force indicates tension. Buckling forces for

members in tension are omitted. The critical member is highlighted.

Member Length (in) Tension (T) or Buckling Force with Force at Max Load

Compression (C) Uncertainty (oz) (oz)
T1 7.83 C 51.7 £+ 1.54 -26.9
T2 7.83 T n/a 12.0
T3 7.00 T n/a 23.5
T4 7.57 C 55.7+1.54 -22.7
T5 8.94 C 38.6 +1.54 -23.5
T6 8.00 T n/a 33.1
T7 8.94 C 38.6 £ 1.54 -20.1
T8 8.06 C 48.5 + 1.54 -48.5
T9 15.00 T n/a 74.2
T10 10.1 C 29.5+1.54 -12.1
T 9.00 T n/a 29.5
T12 7.50 C 56.9 + 1.54 -40.1
T13 10.1 C 29.5+1.54 -21.1
T14 8.56 C 38.6 +1.54 -20.2
T15 8.94 T n/a 211
T16 8.00 T n/a 10.6
T17 8.94 C 38.6 £ 1.54 -23.7

Table 3 below displays important information about buckling in candidate truss 1, with the critical

member highlighted, buckling strength in the member, and the load the truss can support with

uncertainties.




Table 3. The critical member, length, and buckling strength for candidate truss 1, as well as the
maximum theoretical laid and load-to-cost ratio.

Crit. Member | Length (in) [ Buckling Strength (0z.) | Max Theor. Load Load-to-Cost Ratio
(0z.) (0z.19)

T8 (m8) 8.06 48.5+1.54 453 +1.44 0.181

In total, the first candidate truss had a theoretical load (45.3 0z.) much higher than the required
amount (32 o0z.). The total cost ($250.24) was beneath the required $300, and the truss the
required 32 inches (with a pin at 15 inches). Each joint was separated by 2 7 inches.

Candidate Truss 2:

Candidate truss 2 was a modified version of the first one. The design for the truss is displayed in
Figure 5 with the members and joints labeled. Furthermore, the critical member is highlighted.
Figure 6 displays the code output. Table 4 summarizes the forces in each of the members as
well as provides information on member lengths, buckling forces, and force at max load. Note
again, that only the buckling forces are used to determine the max load. Additionally, the critical
member is highlighted according to the computational result.

(13.562)

(8.00)
7.00
8.00

002

Sx|

53,2

Figure 5. Diagram of candidate truss 2 with joints and members numbered and external forces
labeled. The critical member (the member which will buckle first) is highlighted.
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M Editor - TrussDesign1_GalenJustinFelix A1.m ® x |@ Web Browser - EK301_Prelim

Command Window
>> TrussDesignl GalendJustinFelix Al
EK301, Section Al, Group: Galen C., Justin Y., Felix M., 11/12/2024
Load: 66.77 oz
Member Forces in oz
ml: -39.66 oz (C)
m2: 17.74 oz (T)
m3: 34.70 oz (T)
mid: -33.55 oz (C)
m5: -34.70 oz (C)
mé: 48.78 oz (T)
m7: -19.17 oz (C)
m8: 102.77 oz (T)
m9: -66.22 oz (C)
ml0: -63.10 oz (C)
mll: -21.61 oz (C)
ml2: 48.91 oz (T)
ml3: -31.39 oz (C)
mld: -33.75 oz (C)
ml5: 31.51 oz (T)
mle: 17.89 oz (T)
ml7: -36.05 oz (C)
Reaction Forces in oz
Sxl: 0.00 oz
Syl: 35.47 oz
Sy2: 31.30 oz
Cost of Truss: 5243.71
Critical Member: m9
Max Load: 66.7730 oz
f3€ Theoretical Max Weight to Cost Ratio: 0.27398317

nary _Design_InputFile

Workspace

&) |Name Value
A 20x20 double
[ Ax 10x17 double
[ Ax_Sx 10x20 double
o Ay 10x77 double
[ Ay Sy 10x20 double
tc 10x17 double
o c 100
mmfevd] 143.7122
[ col_c 17
[ Critical Me... 9
[l Failed_Joint  102.7699
i 17
[ index 18
L 20x71 double
[l Member F... -576.7941
[inum_cols_... 17
[ num_cols_... 17
[ Num_com... 10
[ num_rows... 10
o num_rows... 10
[0 Num_XFor... 1
[ Num_YFor... 2
{11 Perit -48.4706
[ distance  8.0623
[ r_distances... 143.7122
[ r_distances... 17x7 double
[/ Rm -0.5399
[ row1 9
[ row2 10
[ rows_with_... [9;10]
[11S_col 3

Figure 6. Computational output for candidate truss 2 with load, member forces (0z.), reaction

forces (0z.), cost of truss, max load, and weight-to-cost ratio highlighted.

Table 4. Members, lengths, state of force (tension, compression, or zero-force member),

buckling forces with uncertainties, and force under max load of members in candidate truss 2.

The critical member is highlighted.

Member Length (in) Tension (T) or Buckling Force with Force at Max
Compression (C) Uncertainty (oz) Load (oz)
T1 7.83 C 52.7 + 1.54 -39.7
T2 7.00 T n/a 17.7
T3 7.83 T n/a 347
T4 7.57 C 55.7 + 1.54 -33.6
T5 8.94 C 38.6 + 1.54 -34.7
T6 8.00 T n/a 48.8
T7 8.94 C 38.6 + 1.54 -19.2
T8 13.56 T n/a 103
T9 7.00 C 66.2 + 1.54 -66.2
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T10 7.00 Cc 66.2 + 1.54 -63.1
T11 9.18 C 36.4 + 1.54 -21.6
T12 9.00 T n/a 48.9
T13 9.18 C 36.4 £ 1.54 -31.4
T14 8.56 Cc 46.4 £ 1.54 -33.8
T15 8.06 T n/a 31.5
T16 8.00 T n/a 17.9
T17 8.06 C 48.5+1.54 -36.1

Table 5 below displays important information about buckling in candidate truss 2, with the critical
member highlighted, buckling strength in the member, and the load the truss can support with
uncertainties.

Table 5. The critical member, length, and buckling strength for candidate truss 2, as well as the
maximum theoretical laid and load-to-cost ratio.

Crit. Member | Length (in) [ Buckling Strength (oz.) | Max Theor. Load Load-to-Cost Ratio
(0z.) (0z.19)

T9 (m9) 7.00 31.73+1.54 66.7 + 1.55 0.274
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Discussion & Conclusion:

We began our truss designing process considering basic, well-known trusses such as the Pratt
truss. However, when we adopted them to fit the design requirements for the project, we found
that the loads they could hold were just below the required 32 oz. We next considered a truss
based on equilateral triangles, since they are the most stable type of triangle. Some of these
trusses were able to fulfill the criteria but had room for improvement. If we had more time, we
would certainly continue investigating equilateral-triangle-based trusses. We then arrived at our
two candidate truss designs, both of which are based on isosceles triangles. The two designs
are fairly similar; the largest difference is that candidate truss 2 tries to minimize member
lengths (i.e. in T9 and T10, see Figure 5 and Table 4) whereas candidate truss 1 did not.
Considering this might explain our different results for two trusses; although both designs fit all
of the requirements, the second design, based on the computational analysis, is predicted to
perform much better than the first.

The goal of the design process was to create a truss which not only fulfilled several
requirements but also maximized the load it could support without buckling and minimized the
cost while doing it. Both of our trusses were below the required $300: our first truss had a total
cost of $250.24 (Figure 4) while our second design had a total cost of $243.71 (Figure 6). The
slight difference in cost simply comes from shortening the members connecting the central
spike. The trusses also had max theoretical load greater than the minimum required 32 oz. The
first truss had a max theoretical load of 45.3 oz (Table 3) which is solidly past the required
amount, but our second truss had a max theoretical load of 66.7 oz (Table 5) which more than
doubles the requirement. The difference in max load is likely due to the shortening of members
T9 and T10 and the slight angle of T8 on Truss 2 (Figure 5). Since our second truss had both a
lower cost and had a greater max load, it had a larger load-to-cost ratio of 0.274 o0z/$ (Table 5)
when compared to truss one’s ration of 0.181 0z/$ (Table 3). Based on these metrics we
decided that truss 2 was a better design choice.

For testing in the future, we plan on adjusting small parameters (e.g. width in the surrounding
members, height) in the central spike to see if we can obtain an even larger max load.
Furthermore, we want to investigate more designs with equilateral triangles because they
should theoretically be stronger than the isosceles triangles that we used.



Appendix:
Input File Code
B et Direct Input 'C' ——————-—omom—-
% Connection Matrix | Members (Columns), Joints (Rows)
C=1110000000000000O0O0;
101 1000000000000 O0;
01101 100000000000,
o001 101100000000 O0;
O000O01I 1011 10000O00:
Q00000011001 000O0O0;
OO0O00O0O0O0OD0OCO0O10O1110O0O0;
OO00O0ODO0OO0O0ODO0OCO0OO0O1I0O1I 0110
Qo000 O0OO0ODO0OCO0O0OD0OD0OO0OT1 1O,
ooo0O0O0CO0OO0OO0OO0OO0ODO0QOO0ODOO0OT1 1),
% C = Il O0O0O0ODO0O0OO0O0CQ0O0D00OD0O0:;
ki 101 1000000000000 0:
b 01101 10000000000 O0;
% 0001 10101000000Q00;
% o000 111001 100000;
% COo0OO0OO0O0OO0D1 11000000 O0;
ki ooo00O0OO0ODOOCI1T1O1T1000:
ki ooo0O0OO0ODOOCOO0O1I 1011 0:
b Oo0oO0OO0O0ODO0ODOOO0OD0OOD1101:;
b O0oO0OO0O0ODO0ODODOOODODOO0OT1 1):
H—-———— Direct Input "5x & Sy' ---—————————-

% Support Matrix
Num_XForces = 1

Sx o= |

o000 00 00—
Cooooooooo
coooCoCCoOoQOoo0O

Num_ YForces = 2:

Sy o= |

fn i o B o B e i e i e e i e

CoOoO oo -—
oo o000

of X-directid

% Support Matrix of Y-directi

on |

on |

Members

Members

(Columns) , Joints

(Columns) , Joints

(Rows)

(Rows)

13
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H—mm e Direct Input 'X & Y' --————--———————-
% X-Coordinate (Chronologically Correspondant by Joint 4
X = [0, 3.5, 7, 11, 15, 15, 19.5, 24, 28, 32]; % Joint 1 --= Joint n

% X = [0, 3.5, 7, 11, 15, 15.25, 19.5, 24, 28, 3Z2]: % Truss2

% Y-Coordinate (Chronologically Correspondant by Joint #)

Y= [0, 7,0, 8, 0,15, 8, 0, 7, 0];: % Joint 1 --= Joint n

%Y = [0, 7, 0,8, 0, 13.562, 8, 0, 7, 0]: % Truss2
Hmmm - Direct Input 'L’ —-————----ooom
% Load Vector Order by Horizontal --= Vertical Joints
L= 1[0; 0, 00,0, 0;,0; 0,0, 0;, %X

0, 0; 0; 0, 45.2672; 0, 0; 0; O0; O]; %Y

save ('TrussDesignl_GalenJustinFelix Al .mat', 'C", 'Sx°, 'Sy, 'X', '¥Y', 'L", "Num_XForces'
run (' EK301_Preliminary_Design_OutputFile.m')

EK301, Section Al, Group: Galen C., Justin Y., Felix M., 1171272024

Load: 45 27 o=z

Member Forces in oz
ml: -26.89 oz (C)
m2: 12.02 oz (T)
m3: 23.53 oz (T)
md: -22.74 oz (C)
m5: -23.53 oz (C)
m&: 33.07 oz (T)
m7: -20.17 oz (C)
m8: -48.47 oz (C)
m: 79.49 oz (T)
mld: -18.57 oz (C)
mll: 33.15 oz (T)
ml2: -44 .47 o=z (C)
ml3: -21.28 o=z (C)
mld: -22.88 oz (C)
ml5: 21.36 oz (T)
mlG: 12.13 oz (T)
ml7: -24.44 o=z (C)

Reaction Forces in oz
Sx1: -0.00 o=z
Syl: 24.05 oz
Sy2: 21.22 oz

Cost of Truss: §247 .53

Critical Member:@ m8

Max Load: 45.2672 o=z

Theoretical Max Weight to Cost Ratio: 0. 18287394

Published with MATLAB® R2023a




Output File Code
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% Clear wariables and load data

clear all

load ("C:\Users madak \OneDrive Desktop
YWEK301MTrussDesignl_GalenJustinFelix Al matc”) .

% Calculate the dimensions for matrix Ax & Ay
num_rows_Ax = size(C, 1)

num_cols_ Ax = size(C. 2):

numn_rows_Ay = size(C, 1):

num_cols_Ay = size(C, Z):

% Create matrix Ax & Av with dimensions of C
Ax = zeros(num_rows_Ax, num_cols_Ax)

Ay = zeros(num_rows_Ay, num_cols_Ay) ;

% Tterate through each column of C (each member) --= Ax
r_distances_Sum = 0
r_distances _vector = eve(size(C, 1}, 1};

index = 1;

for col_c = l:size(C. 2)
% Find rows (each joint) where there is a 1 in each column of C
rows_with_ones in o = Find(C{:. col_«c) == 1)

% Iterate through each column in C to find the 2 corresponding rows with
respectively
for 1 = l:length(rows_with_ones_in_c) -1
rowl = rows_with_ones_in_c(4i)
rowe = rows_with_ones_din_c(i+1);

% Ger (X.Y) of the two rows from Inputs X & Y (Coordinates)
x1 = Xirowl)
x®2 = X(row2):
vl = Yi{rowl):
v2 = Y{rowZ)

% Calculate the X, Y coordinates of joint differences respectively
x_difference = x2 - x1:

v_difference = y2 - yl;

r_distance = sgri(x_difference*2 + y_difference®2) ;

% Append each Member Length for Cost Computation
r_distances _Sum = r_distances_Sum + r_distance:
r_distances_vector{(index, 1) = r_distance;

index = index + 1;

% Update Ax matrix with the differences
Ax(rowl, col_c) = x_difference/ r_distance:
Ax(row2, col_c) = -x_difference/ r_distance:
end
end

1
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% Iterate through each column of C (each member)
for col_c = l:size(C, 2)
% Find rows (each joint) where there is a |1
rows_with_ones_in_c = find{C{:,

% Find rows (each joint) where there is a 1

for 1 = 1:length{rows_with_ones_in_c) -1
rowl = rows_with_ones_1in_c (i)
row2 = rows_with_ones_in_c(i+1)

two rows from

% Get Lhe

x1

(X.Y) of
Xirowl):

x2 = X(row2) :
vl = ¥Y(rowl):
v2 = Y(row2) ;

[nputs X & Y

-—— ,-5\._5_.-

in each column of C

col_c) == 1)

in each column of C

(Coordinates)

% Calculate the X, Y coordinates of joint differences respectively

x2 - x1;
vE2 - yl;

x_difference =
yv_difTerence =
r_distance =

% Update Ay matrix with the differences

Ay (rowl, col_c) = y_difference/ r_distance; % Place difference in
first row
Ay ({row2, col_c) = -y_difference’/ r_distance; % Negate the diffTerence
for the second row
end
end

% Create the A Matrix
Ax_ Sx [Ax, Sx]:

Ay Sy = [Ay, Sv];

A = [Ax_Sx; Ay _5Sv]:

% Computing the T matrix

T = inv(A)*L;

%Results

for 1 = l:length(L}
i Lid) = 0
W index = 1
W oz = L{1i);
break :
end
end

disp( 'EK301, Section Al, Group: Galen C.,
disp(sprintf{ Load: %. 20 oz, W_oz)).
disp(sprintf{ Member Forces in oz'));

[-, S_col] = size(Sx)
Num_compression_members = 0

Justin Y.,

sqri( (x_difference) "2 + (y_difference)”2),

Felix M.,

11/12/2024") ;
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for 1 = 1: (length(T) - 5_col)
Member Forces_oz = T(1, 1) * 16:
T or C = T(1i, 1):

if T{i) = 0O
disp(sprincf{’ mad: %20 o=z (T3, 1, T{1))):
elseif T{41) = 0O
disp(sprincl(’ mad: %. 20 o=z (C)°, 1, T(4)));
Num_compression_members = Num_compression_members + 1
glse
disp({sprincf({’ micl: O oz (NSAY . 1))
T4y = 0O;
end
end
disp( Eeaction Forces in oz');
for 41 = 1: Num_XForces
XReaction_Forces = T{{length(T) - 5_col) + i},
disp{sprintf{’ Sxd: %.2F oz', i, XReaction_Forces)):
end
for 41 = 1: Num_YForces
YReaction_Forces = T({length(T}) - S5_col + Num_XForces) + 1i);
disp(sprintf{’ Syd: % 217 oz', 1, YReaction_Forces)) :
end
Cld = 10 * size(C,1):

C2] = r _distances Sum:
Total _Cost = C1J + C2J;
disp(sprintf{ Cost of Truss: $%. 20", Total Cost)) .

W_failure_array = eve(l, Num_compression_members)
for 4 = 1:({size(T, 1) - S_col)
if T{4, 1) = 0
Bm = T{1) / W_o=;
Perdit = -48863 . 346* ((r_distances_vector({i, 1))1"-2_.208): %oz
W_failure = (Perit / Rm):
W_failure_array(l, i) = W_failure;
else
continue

end
end
[-, Critical Member] = min(T)
disp(sprintf{ Critical Member: m%d', Critical_Member)) .

W_railure_value = min(W_failure_array (W_failure_array = 0)),;
disp(sprintlf{ Max Load: %. 40 o=’ , W_failure_wvalue)) :
Failed Joint = max(abs(T)) :

Weight_Cost Ratio Value = W_failure_walue/Total_Cost;
disp(sprintf{ Theoretical Max Weight to Cost Ratio: % .8,
Weight Cost Ratio Value))




