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Introduction: 
Truss analysis by hand is a tedious and time-consuming process in which algebraic errors can 
easily arise. Using a computer program, such as MATLAB, for truss analysis greatly improves 
the accuracy and speed of calculations. The program will determine which member of the truss 
will buckle first and, in conjunction with the experimental critical force from the buckling lab, 
allows us to determine the maximum load the truss can support. Furthermore, optimization of 
cost and maximum load, and comparison between candidate trusses – tasks which would be 
otherwise hard by hand –  are easily completed with a computer program. Using our 
truss-analysis program, we will evaluate several candidate truss designs. Our goal is to choose 
the design which both minimizes cost and supports the heaviest live load.  
 
Methods & Analysis: 

Code: 
Our program depends on a provided input file requiring the user to revise 5 input matrices 
based on consistent numbering of joints and members by the user: 
 

1.​ C: Binary connection matrix (j x m) which describes the connection of the joints (rows) 
and members (columns) of the truss. A “1” in position (j, m) means that joint j is 
connected to member m; a “0” means there is no connection. 

2.​ X: Location vector of length j describing the x-locations (in.) of each joint. 

3.​ Y: Location vector of length j describing the y-locations (in.) of each joint. 

4.​ Sx: Binary support force matrix (j x s) describing the location of the horizontal support 
force(s), where s is the number of support forces. A “1” in position (j, 1) means there is a 
horizontal support force at joint j.  

5.​ Sy: Binary support force matrix (j x s) describing the locations of the vertical support 
forces. A “1” in position (j, s) means there is a vertical support force at joint j. Note that 
between Sy and Sx there should be a “1” in each column. 

6.​ L: Load vector of length 2j that represents the joints of the truss. The row that 
corresponds to the joint where the load is placed has a value of +mg. The rest of the 
vector consists of zeros as the load is placed at one joint. 

Next, matrix A was constructed by concatenating matrices representing the static equilibrium 
equations for the X- and Y-directions (Ax and Ay) as well as inputted Sx and Sy matrices.  

To obtain Ax and Ay (both j x m), the columns of connection matrix C were iterated through to  
identify which rows (joints) each member connects to. Then, for each identified pair of joints, 
their respective coordinate pairs are obtained and the Cartesian distance between them is 
easily calculated. The distances are then used to scale the horizontal and vertical components 
of the force at each joint.  
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For example, for a member spanning from (x1, y1) → (x2, x2), the “1” in position (1, 1) in the Ax 
matrix is scaled by (x2 - x1) / r1,2 and the vertical component at the same position in the Ay matrix 
is scaled by (y2 - y1) / r1,2. This procedure is repeated for each member. Since the absolute 
values of the normalized differences are the same for both connected joints of a member – one 
being (x2 - x1) and the other (x1 - x2) – the code simply negates the sign for the secondary row 
where the value is updated. The same logic applies to the y-differences. 

To form the final A matrix, the Ax and Ay are vertically combined then horizontally concatenated 
with the Sx and Sy matrices. This A matrix (2j x m + s) is related to the load vector (L) by: 

 𝐿 = 𝐴𝑇

where T is a force vector (length m + s) consisting of all of the unknown forces. Because A is a 
square matrix (as s = 3 and, for a normal truss, M = 2J - 3), it is invertible, and T can be solved 
as follows: 

 𝑇 =  𝐴−1 𝐿

Once each of the forces have been obtained via the T matrix, the maximum load and the 
member which will buckle first (critical member) can be found. Because we assume the truss 
members can withstand infinite tension, only the compression forces are considered. Because a 
truss is a linear system, for each compressive member, m, we can obtain Rm which relates the 
external load and the force in the member by: 

 𝑇
𝑚

= 𝑊 × 𝑅
𝑚

⇒ 𝑅
𝑚

= 𝑇
𝑚

 / 𝑊

Next, the buckling force (a function of length) in oz. for each member is obtained by: 

        𝑃
𝑐𝑟𝑖𝑡

(𝐿) = 4863. 346𝐿−2.208

The uncertainty in the buckling force is ± 1.54 oz (95% confidence, 2 standard deviations). From 
Pcrit and Rm, the critical load for each member can be found by dividing Pcrit / Rm. The smallest 

critical load is the maximum load for the truss and the member which determines it is the critical 
member, the member which will buckle first. The uncertainty in the max load can be calculated 

as follows, where ΔPcrit is 1.54 oz: 

 ∆𝑃
𝑐𝑟𝑖𝑡 

/𝑃
𝑐𝑟𝑖𝑡

= ∆𝑊
𝑚𝑎𝑥

/ 𝑊
𝑚𝑎𝑥

⇒ (∆𝑃
𝑐𝑟𝑖𝑡 

× 𝑊
𝑚𝑎𝑥

 )/𝑃
𝑐𝑟𝑖𝑡

= ∆𝑊
𝑚𝑎𝑥

Finally, the total cost of the truss and the weight-to-cost ratio can be calculated. The total cost is 
calculated by: 

  𝐶𝑜𝑠𝑡 = $10(𝑗) + $1(𝑙)

where j is the number of joints and l is the total length of members. Then, the weight-to-cost 
ratio is simply the maximum load divided by the total cost.  
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Practice Problem: 
 

 
Figure 1. Manual solution of a practice truss using the method of joints. The structure is in the 
top left. Tensile forces are positive while compressive forces are negative (sign omitted). 
 
Figure 1 displays the manual approach to a practice truss problem with the goal of confirming 
the accuracy of our program. First, for the entire structure, the sum of forces in the x- and 
y-directions and moment about A were set to zero. This determined the reaction forces at joints 
A and H. From there the individual forces in each member were solved by isolating the joints in 
the following order: A → B → C → H → F → G → D.  
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Figure 2. Computational solution of the same truss problem as in Figure 1. Here, m1 
corresponds to AB; m2 to AD; m3 to BC; m4 to BD; m5 to CD; m6 to CE; m7 to DE; m8 to DF; 
m9 to EG; m10 to FG; m11 to FE; m12 to GH; m13 to FH; Sx1 to Ax; Sy1 to Ax; and Sy2 to Hy. 
 
Figure 2 displays the computational solution of the exact same truss problem that Figure 1 
solved manually. Although the units are in oz., when converted to N, the forces are identical. For 
example, m1 = -59.93 oz = 16.7 N, compression, which is exactly what the manual solution has. 
Table 1 summarizes these results and highlights the similarity between the computational and 
by-hand solutions. 
 
Table 1. Forces for the practice truss problem solved manually and computationally. Forces are 
equivalent, showing the accuracy of the code. 

Manual    Computational  

Member Force (N) Force (oz.)  Member Force (oz.) 

AB -16.7 -59.9  m1 -59.9 
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AD 0 0  m2 0 

BC -23.6 -84.8  m3 -84.8 

BD 16.7 59.9  m4 59.9 

CD 16.7 59.9  m5 59.9 

CE -16.7 -59.9  m6 -59.9 

DE 11.8 42.4  m7 42.4 

DF 8.33 30.0  m8 30.0 

EG -11.8 -42.4  m9 -42.4 

FG 8.33 30.0  m10 30.0 

FE 0 0  m11 0 

GH -8.33 -30.0  m12 -30.0 

FH 0 0  m13 0 

Ax 0 0  Sx1 0 

Ay 16.7 59.9  Sy1 59.9 

Hy 8.33 30.0  Sy2 30.0 

 

Results: 
We choose to analyze two candidate trusses, both of which are based on non-right triangles. 
Both trusses assume a pin support at the left-most joint (forces S1x and S1y) and a roller 
support at the right-most joint (S2y). 

Candidate Truss 1: 
The design for the truss is displayed in Figure 3 with the members and joints labeled. 
Furthermore, the critical member is highlighted. Figure 4 displays the code output. Table 2 
summarizes the forces in each of the members as well as provides information on member 
lengths, buckling forces, and force at max load. Only the buckling forces are noted for members 
under compression as the materials used can sustain (for our purposes) nearly infinite tensile 
force. Additionally, the critical member is highlighted according to the computational result. 
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Figure 3. Diagram of candidate truss 1 with joints and members numbered and external forces 
labeled. The critical member (the member which will buckle first) is highlighted. 
 

 
Figure 4. Computational output for candidate truss 1 with load, member forces (oz.), reaction 
forces (oz.), cost of truss, max load, and weight-to-cost ratio highlighted. A negative force 
indicates compression and a positive force indicates tension. 
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Table 2. Members, lengths, state of force (tension, compression, or zero-force member), 
buckling forces with uncertainties, and force under max load of members in candidate truss 1. A 
negative force indicates compression while a positive force indicates tension. Buckling forces for 
members in tension are omitted. The critical member is highlighted. 

Member Length (in) Tension (T) or 
Compression (C) 

 Buckling Force with 
Uncertainty (oz) 

Force at Max Load 
(oz) 

T1 7.83 C 51.7 ± 1.54 -26.9 

T2 7.83 T n/a 12.0 

T3 7.00 T n/a 23.5 

T4 7.57 C 55.7 ± 1.54 -22.7 

T5 8.94 C 38.6 ± 1.54 -23.5 

T6 8.00 T n/a 33.1 

T7 8.94 C 38.6 ± 1.54 -20.1 

T8 8.06 C 48.5 ± 1.54 -48.5 

T9 15.00 T n/a 74.2 

T10 10.1 C 29.5 ± 1.54 -12.1 

T11 9.00 T n/a 29.5 

T12 7.50 C 56.9 ± 1.54 -40.1 

T13 10.1 C 29.5 ± 1.54 -21.1 

T14 8.56 C 38.6 ± 1.54 -20.2 

T15 8.94 T n/a 21.1 

T16 8.00 T n/a 10.6 

T17 8.94 C 38.6 ± 1.54 -23.7 

 

Table 3 below displays important information about buckling in candidate truss 1, with the critical 
member highlighted, buckling strength in the member, and the load the truss can support with 
uncertainties. 
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Table 3. The critical member, length, and buckling strength for candidate truss 1, as well as the 
maximum theoretical laid and load-to-cost ratio. 

Crit. Member Length (in) Buckling Strength (oz.) Max Theor. Load 
(oz.) 

Load-to-Cost Ratio 
(oz. / $) 

T8 (m8) 8.06 48.5 ± 1.54 45.3 ± 1.44 0.181 

 

In total, the first candidate truss had a theoretical load (45.3 oz.) much higher than the required 
amount (32 oz.). The total cost ($250.24) was beneath the required $300, and the truss the 
required 32 inches (with a pin at 15 inches). Each joint was separated by ≥ 7 inches. 
 
 
Candidate Truss 2: 
Candidate truss 2 was a modified version of the first one. The design for the truss is displayed in 
Figure 5 with the members and joints labeled. Furthermore, the critical member is highlighted. 
Figure 6 displays the code output. Table 4 summarizes the forces in each of the members as 
well as provides information on member lengths, buckling forces, and force at max load. Note 
again, that only the buckling forces are used to determine the max load. Additionally, the critical 
member is highlighted according to the computational result. 
 

 
 
Figure 5. Diagram of candidate truss 2 with joints and members numbered and external forces 
labeled. The critical member (the member which will buckle first) is highlighted. 
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Figure 6. Computational output for candidate truss 2 with load, member forces (oz.), reaction 
forces (oz.), cost of truss, max load, and weight-to-cost ratio highlighted. 
 

Table 4. Members, lengths, state of force (tension, compression, or zero-force member), 
buckling forces with uncertainties, and force under max load of members in candidate truss 2. 
The critical member is highlighted. 

Member Length (in) Tension (T) or 
Compression (C) 

 Buckling Force with 
Uncertainty (oz) 

Force at Max 
Load (oz) 

T1 7.83  C 52.7 ± 1.54 -39.7 

T2 7.00 T n/a 17.7 

T3 7.83 T n/a 34.7 

T4 7.57 C 55.7 ± 1.54 -33.6 

T5 8.94 C 38.6 ± 1.54 -34.7 

T6 8.00 T n/a 48.8 

T7 8.94 C 38.6 ± 1.54 -19.2 

T8 13.56 T n/a 103 

T9 7.00 C 66.2 ± 1.54 -66.2 
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T10 7.00 C 66.2 ± 1.54 -63.1 

T11 9.18 C 36.4 ± 1.54 -21.6 

T12 9.00 T n/a 48.9 

T13 9.18 C 36.4 ± 1.54 -31.4 

T14 8.56 C 46.4 ± 1.54 -33.8 

T15 8.06 T n/a 31.5 

T16 8.00 T n/a 17.9 

T17 8.06 C 48.5 ± 1.54 -36.1 

 

Table 5 below displays important information about buckling in candidate truss 2, with the critical 
member highlighted, buckling strength in the member, and the load the truss can support with 
uncertainties. 
 
Table 5. The critical member, length, and buckling strength for candidate truss 2, as well as the 
maximum theoretical laid and load-to-cost ratio. 

Crit. Member Length (in) Buckling Strength (oz.) Max Theor. Load 
(oz.) 

Load-to-Cost Ratio 
(oz. / $) 

T9 (m9) 7.00 31.73 ± 1.54 66.7 ± 1.55 
 

0.274 
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Discussion & Conclusion: 
We began our truss designing process considering basic, well-known trusses such as the Pratt 
truss. However, when we adopted them to fit the design requirements for the project, we found 
that the loads they could hold were just below the required 32 oz. We next considered a truss 
based on equilateral triangles, since they are the most stable type of triangle. Some of these 
trusses were able to fulfill the criteria but had room for improvement. If we had more time, we 
would certainly continue investigating equilateral-triangle-based trusses. We then arrived at our 
two candidate truss designs, both of which are based on isosceles triangles. The two designs 
are fairly similar; the largest difference is that candidate truss 2 tries to minimize member 
lengths (i.e. in T9 and T10, see Figure 5 and Table 4) whereas candidate truss 1 did not. 
Considering this might explain our different results for two trusses; although both designs fit all 
of the requirements, the second design, based on the computational analysis, is predicted to 
perform much better than the first. 
 
The goal of the design process was to create a truss which not only fulfilled several 
requirements but also maximized the load it could support without buckling and minimized the 
cost while doing it. Both of our trusses were below the required $300: our first truss had a total 
cost of $250.24 (Figure 4) while our second design had a total cost of $243.71 (Figure 6). The 
slight difference in cost simply comes from shortening the members connecting the central 
spike. The trusses also had max theoretical load greater than the minimum required 32 oz. The 
first truss had a max theoretical load of 45.3 oz (Table 3) which is solidly past the required 
amount, but our second truss had a max theoretical load of 66.7 oz (Table 5) which more than 
doubles the requirement. The difference in max load is likely due to the shortening of members 
T9 and T10 and the slight angle of T8 on Truss 2 (Figure 5). Since our second truss had both a 
lower cost and had a greater max load, it had a larger load-to-cost ratio of 0.274 oz/$ (Table 5) 
when compared to truss one’s ration of 0.181 oz/$ (Table 3). Based on these metrics we 
decided that truss 2 was a better design choice.  
 
For testing in the future, we plan on adjusting small parameters (e.g. width in the surrounding 
members, height) in the central spike to see if we can obtain an even larger max load. 
Furthermore, we want to investigate more designs with equilateral triangles because they 
should theoretically be stronger than the isosceles triangles that we used. 
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Appendix: 
Input File Code 
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Output File Code 

 
 
 

 



16 

 
 

 



17 

 
 


